Jumat, 08 Agustus 2008

Cara Murah Mengkonversi Gas Menjadi Bahan Bakar

Oleh Masdin Mursaha

Beberapa peneliti di Jepang telah berhasil membuat sebuah sel bahan bakar yang bisa merubah metana (komponen utama gas alam) menjadi metanol (bahan bakar yang lebih bermanfaat) pada temperatur sedang.

Meskipun telah lama digunakan sebagai bahan bakar pada kenderaan bermotor, namun penggunaan metanol secara lebih luas terhambat oleh mahalnya biaya untuk memproduksinya dari metana - walaupun metana yang relatif murah banyak tersedia dari gas alam dan sebagai produk limbah dari tempat-tempat pembuangan sampah dan kawasan ternak. Perbedaan metanol dengan metana sangat kecil, yakni ada kelebihan satu atom oksigen pada metanol, tetapi untuk mendapatkan atom oksigen ini tanpa menghasilkan karbon dioksida cukup sulit dan biasanya memerlukan temperatur dan tekanan yang tinggi.

Tim penelitian Takashi Hibino di Universitas Nagoya, Jepang, telah berhasil menemukan sebuah metode baru untuk mengubah metana menjadi metanol, yang bisa dilangsungkan pada temperatur sedang (80C) dan tekanan udara. Mereka menggunakan sebuah material baru, timah posfat yang didoping dengan sedikit indium, sebagai material penghantar (elektrolit) pada sebuah sel bahan bakar hidogen/udara.

Sel bahan bakar tersebut normalnya mengubah hidrogen dan oksigen menjadi listrik dan air tetapi radikal-radikal oksigen juga terbentuk dalam proses tersebut.

Tim peneliti ini menemukan bahwa dengan menambahkan metana ke dalam bahan bakar hidrogen, mereka dapat menggunakan radikal-radikal oksigen teraktivasi tersebut untuk mengoksidasi metana menjadi metanol pada temperatur yang jauh lebih rendah dibanding temperatur yang digunakan pada proses konvensional. Meksipun alat ini menggunakan hidrogen dan metana, energi dari reaksi hidrogen bisa dikumpulkan sebagai energi listrik, seperti pada sel bahan bakar biasa.

'Sel bahan bakar kami ini secara simultan menghasilkan listrik dan juga metanol,' ungkap Hibino kepada Chemistry World. 'Akan tetapi, aktivitas reaksi untuk metana masih lambat, sehingga metana yang tidak bereaksi harus disirkulasi beberapa kali pada pengaplikasian sebenarnya.'

Meski begitu, Hibino optimis tentang potensi untuk mengembangkan proses ini menjadi skala industri. 'Yang menjadi target kami adalah sel bahan bakar ini digunakan sebagai sebuah reaktor untuk produksi metanol pada pabrik-pabrik kimia konvensional.'

Yongchun Tang, direktur Power Environmental Energy Research Center di Institut Teknologi California, Pasadena, A.S., sebelumnya telah melakukan beberapa upaya untuk merubah metana menjadi metanol. 'Saya yakin penemuan ini sangat menarik untuk efisiensi energi pemanfaatan gas alam,' ungkapnya ke Chemistry World. 'Metanol dengan biaya rendah merupakan bahan-baku yang sangat fleksibel yang bisa digunakan untuk produksi bensin dan solar atau digunakan secara langsung sebagai bahan bakar. Disamping itu, kelebihan teknologi ini adalah dapat dijadikan metode alternatif untuk penanganan remote gas atau gas terkait dalam jumlah kecil. Teknologi yang diusulkan ini bisa menghentikan pembakaran gas alami yang tidak bisa diolah lagi dan mengurangi emisi dari produksi minyak.

Disadur dari:http://www.rsc.org/chemistryworld/

Zeolit sebagai Mineral Serba Guna

Sinly Evan Putra
Jurusan Kimia FMIPA Universitas Lampung


Zeolit (Zeinlithos) atau berarti juga batuan mendidih, di dalam riset-riset kimiawan telah lama menjadi pusat perhatian. Setiap tahunnya, berbagai jurnal penelitian di seluruh dunia, selalu memuat pemanfaatan zeolit untuk berbagai aplikasi, terutama yang diarahkan pada aspek peningkatan efektivitas dan efisiensi proses industri dan pencemaran lingkungan.

Zeolit umumnya didefinisikan sebagai kristal alumina silika yang berstruktur tiga dimensi, yang terbentuk dari tetrahedral alumina dan silika dengan rongga-rongga di dalam yang berisi ion-ion logam, biasanya alkali atau alkali tanah dan molekul air yang dapat bergerak bebas. Secara empiris, rumus molekul zeolit adalah Mx/n.(AlO2)x.(SiO2)y.xH2O. Struktur zeolit sejauh ini diketahui bermacam-macam, tetapi secara garis besar strukturnya terbentuk dari unit bangun primer, berupa tetrahedral yang kemudian menjadi unit bangun sekunder polihedral dan membentuk polihendra dan akhirnya unit struktur zeolit.

Berikut adalah beberapa contoh jenis mineral zeolit beserta rumus kimianya :

Nama Mineral Rumus Kimia Unit Sel
Analsim Na16(Al16Si32O96). 16H2O
Kabasit (Na2,Ca)6 (Al12Si24O72). 40H2O
Klipnoptolotit (Na4K4)(Al8Si40O96). 24H2O
Erionit (Na,Ca5K) (Al9Si27O72). 27H2O
Ferrierit (Na2Mg2)(Al6Si30O72). 18H2O
Heulandit Ca4(Al8Si28O72). 24H2O
Laumonit Ca(Al8Si16O48). 16H2O
Mordenit Na8(Al8Si40O96). 24H2O
Filipsit (Na,K)10(Al10Si22O64). 20H2O
Natrolit Na4(Al4Si6O20). 4H2O
Wairakit Ca(Al2Si4O12). 12H2O

Di Indonesia, jumlah zeolit sangat melimpah dan tersebar di berbagai daerah baik di pulau Jawa, Sumatera, dan Sulawesi. Pemanfaatan zeolit Indonesia untuk penggunaan secara langsung belum dapat dilakukan, karena zeolit Indonesia banyak mengandung campuran (impurities) sehingga perlu dilakukan pengolahan terlebih dahulu untuk menghilangkan atau memisahkannya dari kotoran-kotoran.

Sifat Unik Zeolit

Karena sifat fisika dan kimia dari zeolit yang unik, sehingga dalam dasawarsa ini, zeolit oleh para peneliti dijadikan sebagai mineral serba guna. Sifat-sifat unik tersebut meliputi dehidrasi, adsorben dan penyaring molekul, katalisator dan penukar ion.

Zeolit mempunyai sifat dehidrasi (melepaskan molekul H20) apabila dipanaskan. Pada umumnya struktur kerangka zeolit akan menyusut. Tetapi kerangka dasarnya tidak mengalami perubahan secara nyata. Disini molekul H2O seolah-olah mempunyai posisi yang spesifik dan dapat dikeluarkan secara reversibel. Sifat zeolit sebagai adsorben dan penyaring molekul, dimungkinkan karena struktur zeolit yang berongga, sehingga zeolit mampu menyerap sejumlah besar molekul yang berukuran lebih kecil atau sesuai dengan ukuran rongganya. Selain itu kristal zeolit yang telah terdehidrasi merupakan adsorben yang selektif dan mempunyai efektivitas adsorpsi yang tinggi.

Kemampuan zeolit sebagai katalis berkaitan dengan tersedianya pusat-pusat aktif dalam saluran antar zeolit. Pusat-pusat aktif tersebut terbentuk karena adanya gugus fungsi asam tipe Bronsted maupun Lewis. Perbandingan kedua jenis asam ini tergantung pada proses aktivasi zeolit dan kondisi reaksi. Pusat-pusat aktif yang bersifat asam ini selanjutnya dapat mengikat molekul-molekul basa secara kimiawi. Sedangkan sifat zeolit sebagai penukar ion karena adanya kation logam alkali dan alkali tanah. Kation tersebut dapat bergerak bebas didalam rongga dan dapat dipertukarkan dengan kation logam lain dengan jumlah yang sama. Akibat struktur zeolit berongga, anion atau molekul berukuran lebih kecil atau sama dengan rongga dapat masuk dan terjebak.

Aplikasi Zeolit

Seperti telah disinggung diatas, bahwasanya dalam dasawarsa ini, zeolt telah dimanfaatkan secara luas oleh masyarakat. Berikut adalah beberapa contoh aplikasinya :

Bidang/Sektor Aplikasi
Pertanian Penetral keasaman tanah, meningkatkan aerasi tanah, sumber mineral pendukung pada pupuk dan tanah, serta sebagai pengontrol yang efektif dalam pembebasan ion amonium, nitrogen, dan kalium pupuk.
Peternakan Meningkatkan nilai efisiensi nitrogen, dapat mereduksi penyakit lembuhg pada hewan ruminensia, pengontrol kelembaban kotoran hewan dan kandungan amonia kotoran hewan.
Perikanan Membersihkan air kolam ikan yang mempunyai sistem resikurlasi air, dapat mengurangi kadar nirogen pada kolam ikan.
Energi Sebagai katalis pada proses pemecahan hidrokarbon minyak bumi, sebagai panel-panel pada pengembangan energi matahari, dan penyerap gas freon.
Industri Pengisi (filler) pada industri kertas, semen, beton, kayu lapis, besi baja, dan besi tuang, adsorben dalam industri tekstil dan minyak sawit, bahan baku pembuatan keramik.

Daftar Pustaka

  • Bambang Setiaji. 2000. Pemanfaatan Zeolit untuk Adsorpsi Benzopiren sebagai Senyawa Racun dalam Asap Cair. Majalah Iptek Vo. 11, No. 4, November 2000.
  • Muhammad Rif誕n. 2005. Zeolit, Kristal Ajaib dari Gunung Berapi. Majalah ACID Edisi III/Tahun V/Mei 2005. Bandar Lampung
  • Najib I. 1994. Pengaruh Pengaktifan Zeolit Lampung dengan Asam Sulfat sebagai Adsorben Ion Amonium. Skripsi Kimia Univ. Lampung. Bandar Lampung
  • Prayitno, KB. 1989. Zeolit sebgai Alternatif Industri Komoditi Mineral Indonesia. BPPT No. XXXV.
  • Rudy Situmeang. 2006. Kimia Katalis. Diktat Kuliah. Bandar Lampung
  • Sujarwadi. 1997. Sekilas tentang Zeolit. Pusat Pengembangan Teknologi Mineral. Bandung
  • Susanto dan Suharso. 1999. Pemisahan Ion-ion Besi dalam Air dengan Zeolit Alam yang Diaktifasi. Jurnal Univ. Lampung. Bandar Lampung
  • Supriyantomo. 1996. Penggunaan Zeolit Lampung yang Diimpregnasi dengan Katalis untuk Reaksi Oksidasi Asam Maleat. Skripsi Kimia Univ. Lampung. Bandar Lampung

Rekayasa Plastik dari Kulit Buah Jeruk

Teguh Priyambodo
Wasekjend IKAHIMKI periode 2006-2008


Jangan buang kulit jeruk itu! Mungkin itulah sepenggal kata yang diucapkan oleh kedua orang tua kita setelah kita mengupas kulit jeruk bali. Hal ini karena saat itu mainan anak-anak banyak yang terbuat dari limbah rumah tangga seperti kulit jeruk. Kita masih ingat dengan kulit jeruk kita dapat membuat mobil-mobilan untuk mainan anak saat kita kecil dulu. Namun dalam dua dasawarsa terakhir mainan anak-anak telah lebih modern bahkan menggunakan teknologi canggih. Kemajuan teknologi telah merubah semua itu, sebagian besar mainan anak sat ini dibuat dari plastik karena memiliki daya tahan yang baik sehingga awet serta relatif aman untuk anak. Akan tetapi, percayakah anda bahwa mainan anak yang canggih dan terbuat dari plastik tersebut suatu saat dapat dibuat dari kulit jeruk.

Jika anda tidak percaya, tanyakan saja pada Geoffrey Coates, seorang profesor bidang kimia dan kimia biologi di Cornell University, New York, Amerika Serikat. Bersama kedua rekannya di grup riset Cornell University, Chris Byrne dan Scott Allen, ia berhasil mengubah kulit jeruk menjadi plastik. Bagaimana caranya?

Mereka menjelaskan bagaimana cara membuat polimer menggunakan limonen oksida sebagai molekul pendukung baru dan karbondioksida menggunakan katalis dalam penelitian di laboratorium. Limonin oksida adalah sejenis karbon dalam bentuk senyawa kimia yang terdapat pada 300 jenis tanaman. Pada buah jeruk, lebih dari 95 persen minyak yang mengandung senyawa tersebut terdapat pada kulit buah jeruk.

Dalam skala industri minyak kulit jeruk ini diekstraksi untuk berbagai macam kegunaan, salah satunya pembersih rumah tangga yang memiliki bau pohon jeruk. Minyak ini kemudian dapat dioksidasi sehingga menghasilkan limonin oksida. Senyawa ini tergolong reaktif dan oleh Coates dan rekannya digunakan sebagai senyawa building block(komponen utama plastik).

Building block lain yang mereka gunakan adalah karbondioksida, yang dikenal sebagai gas atmosfer yang terus meningkat terutama abad ini. Gas ini sebagian besar dihasilkan dari pembakaran bahan bakar fosil(minyak bumi, gas alam, maupun batubara). Gas ini pada akhirnya akan mengancam keberlangsungan lingkungan karena termasuk gas rumah kaca yang pada akhirnya akan mengakibatkan pemanasan global di bumi.

Dengan menggunakan katalis untuk menggabungkan limonen oksida dan karbondioksida, grup riset Coates berhasil memproduksi polimer baru yang dikenal sebagai polilimonin karbonat. Polimer ini ternyata memiliki banyak karakteristik yang sama seperti polistiren. Polistiren bahan plastik yang dibuat dari minyak bumi dan banyak digunakan dalam produk plastik yang bisa dibuang.

Polimer merupakan unit yang berulang pada senyawa kimia, logika sederhananya adalah seperti helaian kertas pada mainan anak. Walaupun nanti suatu saat polimer sebagai plastik pada mainan anak tersebut akan menggunakan komponen pengganti dari limonin oksida ujur Coates. Baik limonen oksida maupun karbondioksida keduanya tidak dapat membentuk dengan polimer dengan sendirinya, akan tetapi harus dicampur sehingga menjadi produk yang diharapkan.

Berdasarkan observasi Coates, kebanyakan plastik yang digunakan saat ini adalah poliester dalam pakaian serta untuk keperluan kemasan makanan dan elektronik. Bahan dasar ini berasal dari minyak bumi sebagai building blok-nya. Dia mengatakan jika kita dapat menggunakan minyak bumi dan menggantinya dengan bahan yang melimpah serta terbaharukan, hal itu merupakan suatu hal yang perlu untuk di investigasi. Hal yang menarik dari sini adalah berkaitan dengan pekerjaan yang sepenuhnya menggunakan bahan baku terbaharukan walaupun pada akhirnya dapat membuat plastik dengan kualitas yang menarik.

Grup riset Coates sangat tertarik dengan penggunaan karbondioksida sebagai building block pada polimer. Sebenarnya gas yang merupakan produk limbah di udara bebas ini dapat disolasi untuk pembuatan plastk, seperti polilimonin karbonat. Laboratorium Coates terdiri atas 18 orang kimiawan dan sebagian besar darinya menggunakan material yang dapat didaur ulang dan biodegradabel (dapat terurai oleh bakteri tanah) serta murah dan melimpah sebagai building block yang ramah lingkungan. Riset Coates ini didukung oleh Packard Foundation fellowship program, the National Science Foundation, the Cornell Center for Materials Research and the Cornell University Center for Biotechnology.

Sumber: http://www.chem.cornell.edu/gc39

Tempe bisa menawarkan racun?

Oleh Iman Salman
Jurusan Pendidikan Kimia FPMIPA UPI


Protein yang kita kenal sampai saat ini

Persepsi kita terhadap sesuatu hal memang berbeda karena persepsi terbentuk atas informasi dari luar yang kemudian berkombinasi dengan karakter dan ilmu yang telah ada di dalam diri kita. Begitu pula halnya dengan persepsi kita terhadap sebuah kata "protein", sebuah kata sederhana yang tersusun dari tujuh buah huruf: p, r, o ,t, e, i, dan n. Kata yang sederhana namun ternyata penuh makna terutama ketika kata protein itu dibawa kedalam ruang sistem kajian ilmu kimia atau biokimia.

Beragam pengenalan masyarakat terhadap protein. Sebagian masyarakat kita ada yang telah mengenal kata itu, ada yang telah mendengar saja, atau ada juga yang mungkin belum mendengar sama sekali. Ada yang mengetahui bahwa protein adalah zat pembangun meski tidak tau apa maksud zat pembangun itu, ada yang mengetahui bahwa protein adalah salah satu zat makanan yang harus ada pada tiap menu makanan, ada yang mengetahui bahwa kekurangan protein dapat menyebabkan busung lapar, ada yang mengetahui bahwa protein adalah salah satu zat gizi dalam makanan yang sangat diperlukan tubuh, dan pengetahuan-pengetahuan lainnya. Ini semua benar.

Kita memperoleh protein dari makanan yang berasal dari hewan atau tumbuhan. Protein yang berasal dari hewan disebut protein hewani, sedangkan protein yang berasal dari tumbuhan disebut protein nabati. Beberapa makanan sumber protein ialah daging, telur, susu, ikan, beras, kacang, kedelai, gandum, jagung, dan beberapa buah-buahan.

Protein dalam praktikum kimia dan ilmu (bio)kimia

Pengarahan Praktikum kimia

Ketika saya memasuki kuliah di jurusan Pendidikan Kimia FPMIPA UPI, disanalah mulai terjadi persepsi tambahan yang baru tentang protein. Ketika para mahasiswa-baru masuk laboratotium kimia dan mendapatkan pengarahan dari instruktur laboratorium, yang salah satunya adalah sebuah anjuran agar meminum susu murni setelah melaksanakan praktikum. Sebuah anjuran yang menyenangkan untuk dilakukan karena susu adalah sebuah bagian dari menu makanan yang merupakan 廃enyempurna・makanan dalam teori lama mengenai konsep makanan: empat sehat lima sempurna

Kemudian setelah dibaca ternyata anjuran meminum susu ini memang terdapat secara formal pada buku panduan praktikum, dan pada buku panduan tersebut terdapat tambahan yakni 敗usu murni atau putih telur・/p>

葱uliah Ilmu (bio)kimia・/I>

Mengapa meminum susu murni atau putih telur? Ternyata yang menjadi alasannya adalah karena adanya protein yang terdapat dalam susu murni atau putih telur tesebut. Apa hubungannya protein dengan praktikum?

Karena aktivitas praktikum akan memberikan peluang masuknya beberapa 配at kimia・kedalam tubuh, yang mana bisa jadi diantara zat kimia tersebut adalah zat beracun seperti uap asam klorida (HCl), uap kloroform (CHCl3), uap logam berat, dll.

Untuk dapat menjelaskan mengapa protein dapat menjadi penawar racun, berikut saya pindahkan saja sebuah potongan kalimat yang terdapat dalam buku 泥asar-dasar Biokimia・Bab Protein, karya Prof. Dr. Anna Poedjiadi ke hadapan para pembaca. ・Ion-ion positif yang dapat mengendapkan protein antara lain ialah Ag+, Ca2+, Zn2+, Hg2+, Fe2+, Cu2+ dan Pb2+. ....... Berdasarkan sifat tersebut putih telur atau susu dapat digunakan sebagai antidotum atau penawar racun apabila orang keracunan logam berat.・Mudah-mudahan pemindahan teks ini merupakan sebuah pemindahan yang berharga, dalam rangka memindahkan ilmu dari kampus ke meja para pembaca.

Apa manfaatnya untuk kita

Sengaja tidak dibahas kajian teoritis bagaimana proses kerjanya sehingga protein dalam susu murni atau putih telur dapat menjadi penawar racun, karena pembahasannya membutuhkan pemahaman ilmu kimia mengenai konsep titik isolistrik dan reaksi pengendapan serta ilmu biologi mengenai proses metabolisme dalam tubuh yang barangkali hanya akan membuat kita kebingungan. Yang terpenting dari tulisan ini adalah agar dapat menjadikan aktivitas konkrit yang bisa kita lakukan atas ilmu ini dalam aktivitas keseharian kita.

Wujudkan dalam aktivitas keseharian.

泥ari laboratorium menuju meja aktivitas keseharian・

Selain di laboratorium, dalam aktivitas keseharian pun kita tidak lepas dari kemungkinan masuknya zat beracun kedalam tubuh. Beberapa diantaranya adalah gas kendaraan bermotor. Pada umumnya dapat dipastikan bahwa akibat aktivitas kendaraan bermotor, udara di sekeliling kita setidaknya akan mengandung gas NOx dan partikulat Timbal (Pb). Selain dari kendaraan bermotor, dalam makanan keseharian kita pun kemungkinan adanya zat-zat kimia beracun yang masuk kedalam tubuh sangat dimungkinkan.

Berkaitan dengan hal ini, maka kita pun perlu membentengi diri dengan protein salah salah satunya. Prof.Dr.Anna Poedjiadi dalam buku yang disebutkan di atas menyuguhkan sebuah tabel daftar komposisi Bahan makanan sumber protein sebagai berikut.

Nama bahan makanan Kadar protein (%)
Daging ayam 18.2
Daging sapi 18.8
Telur ayam 12.8
Susu sapi segar 3.2
Keju 22.8
Bandeng 20.0
Udang segar 21.0
Beras tumbuk merah 7.9
Beras giling 6.8
Kacang hijau 22.2
Kedelai basah 30.2
Tepung terigu 8.9
Jagung kuning (butir) 7.9
Pisang ambon 1.2
Durian 2.5

Susu murni atau putih telur bisa kita ganti dengan tempe misalnya, atau tahu juga bisa kita gunakan dalam rangka menangkal racun yang barangkali telah masuk kedalam tubuh kita. Ingat, tempe dan tahu terbuat dari kacang kedelai yang tentu akan mengandung protein juga seperti halnya zat asalnya. Mari kita hidup sederhana. Obat tidak perlu mahal, bahkan obat tidak perlu bernama obat. Makanan keseharian kita pun sebenarnya dapat berfungsi sebagai obat penangkal racun. Bagi para ibu yang suka memasak, bumbu masakan seperti kunyit, kencur, daun sirih, daun salam, dan rempah-rempah lainnya pada umumnya juga memiliki daya penangkal racun yang akan bermanfaat untuk tubuh. Begitu juga dengan sayuran dan buah-buahan memiliki daya penangkal terhadap racun. Kemudian sebisa mungkin hindari bumbu-bumbu masakan yang merupakan bumbu sintesis. Kalau bumbu masakan dengan rempah-rempah justru lebih nikmat serta memiliki kemampuan menangkal racun, mengapa kita tidak memilih rempah-rempah saja, capek sedikit untuk sekedar mengulek nampaknya lebih baik kalau kita ingin hidup lebih sehat.

Nampaknya layak juga wacana teoritis ilmiah ini menjadi sumbangan ilmu bagi proses belajar-mengajar di sekolah mulai dari SD hingga SMA, bahkan hingga mahasiswa sekali pun karena sebenarnya wacana bahwa protein dapat berfungsi sebagai penangkal racun ini tidak banyak diketahui meskipun oleh seorang mahasiswa kimia. Sepanjang yang saya ketahui. Dan apa yang dituliskan ini juga adalah sekedar estimasi atas teori yang ada, kalau ternyata apa yang dituliskan ini adalah wacana yang keliru maka itulah tugas pakar ilmu untuk membenarkannya. Karena memang tiap ilmu itu ada "barisan pemegang kuncinya".

Spektrofotometri Infra Merah

Oleh EG Giwangkara S.

Berkas radiasi elektromagnetikSpektrofotometri Infra Red atau Infra Merah merupakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0,75 ・1.000 オm atau pada Bilangan Gelombang 13.000 ・10 cm-1. Radiasi elektromagnetik dikemukakan pertama kali oleh James Clark Maxwell, yang menyatakan bahwa cahaya secara fisis merupakan gelombang elektromagnetik, artinya mempunyai vektor listrik dan vektor magnetik yang keduanya saling tegak lurus dengan arah rambatan.

Gambaran berkas radiasi elektromagnetik diperlihatkan pada Gambar 1 berikut :

Berkas radiasi gelombang elektromagnetik

Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu. Spektrum elektromagnetik merupakan kumpulan spektrum dari berbagai panjang gelombang. Berdasarkan pembagian daerah panjang gelombang pada Tabel 1 dan Gambar 2, sinar infra merah dibagi atas tiga daerah, yaitu:
a. Daerah Infra Merah dekat.
b. Daerah Infra Merah pertengahan.
c. Daerah infra merah jauh..

Tabel pembagian spektrum

Gambar pembagian radiasi elektromagnetik

Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 ・50 オm atau pada bilangan gelombang 4.000 ・200 cm-1. Satuan yang sering digunakan dalam spektrofotometri infra merah adalah Bilangan Gelombang ( Nu bar ) atau disebut juga sebagai Kaiser.

Interaksi Sinar Infra Merah Dengan Molekul

Berkas radiasi elektromagnetikDasar Spektroskopi Infra Merah dikemukakan oleh Hooke dan didasarkan atas senyawa yang terdiri atas dua atom atau diatom yang digambarkan dengan dua buah bola yang saling terikat oleh pegas seperti tampak pada gambar disamping ini. Jika pegas direntangkan atau ditekan pada jarak keseimbangan tersebut maka energi potensial dari sistim tersebut akan naik.

Setiap senyawa pada keadaan tertentu telah mempunyai tiga macam gerak, yaitu :

  1. Gerak Translasi, yaitu perpindahan dari satu titik ke titik lain.
  2. Gerak Rotasi, yaitu berputar pada porosnya, dan
  3. Gerak Vibrasi, yaitu bergetar pada tempatnya.

Bila ikatan bergetar, maka energi vibrasi secara terus menerus dan secara periodik berubah dari energi kinetik ke energi potensial dan sebaiknya. Jumlah energi total adalah sebanding dengan frekwensi vibrasi dan tetapan gaya ( k ) dari pegas dan massa ( m1 dan m2 ) dari dua atom yang terikat. Energi yang dimiliki oleh sinar infra merah hanya cukup kuat untuk mengadakan perubahan vibrasi.

Panjang gelombang atau bilangan gelombang dan kecepatan cahaya dihubungkan dengan frekwensi melalui bersamaan berikut :

Energi yang timbul juga berbanding lurus dengan frekwesi dan digambarkan dengan persamaan Max Plank :

sehingga :

dimana :

E = Energi, Joule
h = Tetapan Plank ; 6,6262 x 10-34 J.s
c = Kecepatan cahaya ; 3,0 x 1010 cm/detik
n = indeks bias (dalam keadaan vakum harga n = 1)
l = panjang gelombang ; cm
u = frekwensi ; Hertz

Dalam spektroskopi infra merah panjang gelombang dan bilangan gelombang adalah nilai yang digunakan untuk menunjukkan posisi dalam spektrum serapan. Panjang gelombang biasanya diukur dalam mikron atau mikro meter ( オm ). Sedangkan bilangan gelombang ( Nu bar ) adalah frekwensi dibagi dengan kecepatan cahaya, yaitu kebalikan dari panjang gelombang dalam satuan cm-1. Persamaan dari hubungan kedua hal tersebut diatas adalah :

Posisi pita serapan dapat diprediksi berdasarkan teori mekanikal tentang osilator harmoni, yaitu diturunkan dari hukum Hooke tentang pegas sederhana yang bergetar, yaitu :

dimana :

Keterangan :

c = kecepatan cahaya : 3,0 x 1010 cm/detik
k = tetapan gaya atau kuat ikat, dyne/cm
= massa tereduksi
m = massa atom, gram

Setiap molekul memiliki harga energi yang tertentu. Bila suatu senyawa menyerap energi dari sinar infra merah, maka tingkatan energi di dalam molekul itu akan tereksitasi ke tingkatan energi yang lebih tinggi. Sesuai dengan tingkatan energi yang diserap, maka yang akan terjadi pada molekul itu adalah perubahan energi vibrasi yang diikuti dengan perubahan energi rotasi.

Perubahan Energi Vibrasi

Atom-atom di dalam molekul tidak dalam keadaan diam, tetapi biasanya terjadi peristiwa vibrasi. Hal ini bergantung pada atom-atom dan kekuatan ikatan yang menghubungkannya. Vibrasi molekul sangat khas untuk suatu molekul tertentu dan biasanya disebut vibrasi finger print. Vibrasi molekul dapat digolongkan atas dua golongan besar, yaitu :

  1. Vibrasi Regangan (Streching)
  2. Vibrasi Bengkokan (Bending)

Vibrasi Regangan (Streching)

Dalam vibrasi ini atom bergerak terus sepanjang ikatan yang menghubungkannya sehingga akan terjadi perubahan jarak antara keduanya, walaupun sudut ikatan tidak berubah. Vibrasi regangan ada dua macam, yaitu:

  1. Regangan Simetri, unit struktur bergerak bersamaan dan searah dalam satu bidang datar.
  2. Regangan Asimetri, unit struktur bergerak bersamaan dan tidak searah tetapi masih dalam satu bidang datar.

Jenis vibrasi regangan

Vibrasi Bengkokan (Bending)

Jika sistim tiga atom merupakan bagian dari sebuah molekul yang lebih besar, maka dapat menimbulkan vibrasi bengkokan atau vibrasi deformasi yang mempengaruhi osilasi atom atau molekul secara keseluruhan. Vibrasi bengkokan ini terbagi menjadi empat jenis, yaitu :

  1. Vibrasi Goyangan (Rocking), unit struktur bergerak mengayun asimetri tetapi masih dalam bidang datar.
  2. Vibrasi Guntingan (Scissoring), unit struktur bergerak mengayun simetri dan masih dalam bidang datar.
  3. Vibrasi Kibasan (Wagging), unit struktur bergerak mengibas keluar dari bidang datar.
  4. Vibrasi Pelintiran (Twisting), unit struktur berputar mengelilingi ikatan yang menghubungkan dengan molekul induk dan berada di dalam bidang datar.

Jenis vibrasi bengkokan

Daerah Spektrum Infra Merah

Para ahli kimia telah memetakan ribuan spektrum infra merah dan menentukan panjang gelombang absorbsi masing-masing gugus fungsi. Vibrasi suatu gugus fungsi spesifik pada bilangan gelombang tertentu. Dari Tabel 2 diketahui bahwa vibrasi bengkokan C蓬 dari metilena dalam cincin siklo pentana berada pada daerah bilangan gelombang 1455 cm-1. Artinya jika suatu senyawa spektrum senyawa X menunjukkan pita absorbsi pada bilangan gelombang tersebut tersebut maka dapat disimpulkan bahwa senyawa X tersebut mengandung gugus siklo pentana.

Vibrasi karakteristik dasar dari hidrokarbon jenuh

Daerah Identifikasi

Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 ・400 cm-1. Karena di daerah antara 4000 ・2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional. Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan. Sedangkan daerah antara 2000 ・400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut.

Dalam daerah 2000 ・400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 ・2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 ・400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.

Sel Surya Organik

Oleh Soetrisno

Mengubah energi surya menjadi listrik dengan cara yang murah dan efisien bisa membantu menanggulangi pemanasan global dan kekurangan bahan bakar fosil. Akan tetapi, biaya produksi listrik yang tinggi dari sel-sel surya berbasis silikon telah membatasi penggunaan teknologi ini. Dalam hal ini diperlukan sel surya yang murah dengan kinerja sel tinggi dan sel surya organik bisa menjadi solusi. Sel-sel ini mudah dibuat dari material organik yang tidak mahal dan, berbeda dengan sel surya anorganik, ringan, fleksibel dan beraneka warna.

Absorpsi cahaya oleh sel-sel organik menyebabkan sebuah keadaan eksitasi yang dikenal sebagai exciton atau pasangan elektron-lubang (electron-hole). Elektron dan lubang terpisah satu sama lain dan dibawa melalui molekul donor dan akseptor ke elektroda, menghasilkan sebuah arus listrik (photocurrent). Proses konversi cahaya secara langsung menjadi listrik ini dikenal sebagai fotovoltaik dan harus dioptimasi untuk sel-sel surya organik agar menjadi efisien. Banyak upaya yang telah dilakukan untuk mencari molekul donor dan akseptor yang cocok dan pengaturannya pada sebuah permukaan elektroda yang berskala nanometer.

Fulleren dan turunannya telah banyak digunakan sebagai molekul akseptor yang sangat baik. Baru-baru ini, tabung-nano karbon (CNT), yang memiliki struktur berbasis karbon mirip fulleren, telah menarik banyak perhatian. Berbeda dengan bentuk fulleren yang bulat, CNT memiliki struktur satu dimensi seperti kawat, yang menjadikannya lebih baik dalam membentuk jalur transportasi elektron atau lubang dalam sel. Area permukaannya yang luas meningkatkan pemisahan pasangan elektron-lubang dan menunjukkan daya hantar yang beberapa kali lebih besar dibanding polimer-polimer penghantar listrik. CNT juga bisa bertindak sebagai donor sekaligus akseptor elektron tergantung pada sifat-sifat redoks dari komponen lain dalam sel. Semua sifat ini menjadikan CNT sebagai kandidat yang menjanjikan untuk pemisahan dan transport muatan dalam sel-sel surya organik.

Struktur yang mirip kawat membantu tabung-nano karbon membentuk jalur-jalur transport muatan pada sel-sel surya organik

Beberapa ilmuwan telah membuat peralatan fotoelektrokimia atau sel fotovoltaik dengan elektroda yang termodifikasi CNT. Mereka menggunakan berbagai metode, termasuk deposisi lapis demi lapis dan pelapisan semprot, untuk mengatur CNT dengan molekul donor atau akseptor yang cocok pada permukaan-permukaan elektroda. Akan tetapi, sekarang ini, efisiensi konversi energi dari elektroda yang termodifikasi CNT belum setara dengan kinerja tinggi sel surya peka zat warna - yang menggunakan elektroda titanium dioksida nanokristalin berpori dengan zat warna ruthenium.

Saat ini, sulit untuk mensintesis CNT murni dengan struktur yang konsisten. Untuk memperbaiki sel surya berbasis CNT, para ilmuwan telah memurnikan atau memilih CNT yang memiliki struktur terbaik untuk transpor muatan. Atau, pendekatan yang lebih menarik adalah dengan menggunakan CNT sebagai perancah-nano (nanoscaffold) bagi molekul donor atau akseptor untuk membuat jalur transportasi arus.

Sejarah sel-sel surya organik berbasis CNT belum lebih dari 10 tahun. Banyak penelitian yang masih harus dilakukan untuk menunjukkan potensinya dalam konversi energi surya.

Disadur dari: http://www.rsc.org/chemistryworld/

Air laut: Bahan bakar alternatif

Oleh Wahyu Riyadi

Suatu saat nanti, anda mungkin akan melihat banyak anjing laut yang mengelilingi stasiun pengisian bahan bakar. Itu karena bukan aroma bensin, melainkan justru aroma pantai yang lebih terasa di SPBU.

John Kanzius, 63 tahun, telah berhasil menciptakan alternatif bahan bakar dari air laut. Secara kebetulan, teknisi broadcast ini menemukan sesuatu yang menakjubkan. Pada kondisi yang tepat, air laut dapat menyala dengan temperatur yang luar biasa. Dengan sedikit modifikasi, tidak menutup kemungkinan di masa depan, ini dapat di jadikan sebagai alternatif bahan bakar untuk kendaraan bermotor.

Perjalanan Kanzius menjadi inspirasi yang mengejutkan bermula ketika dia di diagnosis menderita leukimia pada tahun 2003. Dihadapkan dengan treatment kemoterapi yang melelahkan, dia memilih mencoba untuk menemukan alternatif yang lebih baik dalam menghancurkan sel-sel kanker. Kemudian di muncul dengan alat Radio Frequency Generator (RFG), sebuah mesin yang menghasilkan gelombang radio dan memancarkannya ke suatu area tertentu. Kanzius menggunakan RFG untuk memanaskan pertikel metal kecil yang dimasukkan ke dalam tumor, menghancurkan sel tumor tanpa merusak sel yang normal.

Tetapi, apa hubungannya antara kanker dengan bahan bakar air laut?

Selama percobaannya dengan RFG, dia menemukan bahwa RFG dapat menyebabkan air yang berada di sekitar test tube mengembun. Jika RFG dapat menyebabkan air mengembun, seharusnya ini dapat juga untuk memisahkan garam dari air laut. Mungkin, ini dapat digunakan untuk men-desalinitasi air laut. Sebuah peribahasa tua tentang laut, "air, air dimana-mana, dan tidak satu tetespun dapat diminum".

Beberapa negara mengalami kekeringan dan sebagian besar rakyatnya menderita kehausan, padahal 70% bumi adalah samudera yang notabene adalah air. Suatu metode yang efektif untuk menghilangkan garam dari air laut dapat menyelamatkan tak terhitung nyawa. Maka tidaklah heran jika Kanzius mencoba alat RFG-nya untuk tujuan desalinitasi air laut.

Pada test pertamanya, dia melihat efek samping yang mengejutkan. Ketika dia arahkan RFG-nya pada tabung yang berisi air laut, air itupun seperti mendidih. Kanzius lalu melakukan test kembali. Saat ini dengan kertas tisue yang terbakar dan menyentuhkannya ke dalam air laut yang sedang di tembak oleh RFG. Dia sangat terkejut, air laut dalam tabung terbakar dan tetap menyala sementara RFG dinyalakan.

Awalnya berita tentang eksperiment ini dianggap suatu kebohongan, tapi setelah para ahli kimia dari Penn State University melakukan percobaan ini, ternyata hal ini memang benar. RFG dapat membakar air laut. Nyala api dapat mencapai 3000 derajat Fanrenheit dan terbakar selama RFG dinyalakan.

Lalu bagaimanakah air laut dapat terbakar? Dan kenapa jika puntung rokok di lemparkan ke dalam laut tidak menyebabkan bumi meledak?

Ini semua berhubungan dengan hidrogen. Dalam keadaan normal, air laut mempunyai komposisi Natrium Klorida (garam) dan Hidrogen, oksigen (air) yang stabil. Gelombang radio dari RFG milik Kanzius mengacaukan kestabilan itu, memutuskan ikatan kimia yang terdapat dalam air laut. Hal ini melepaskan molekul hidrogen yang mudah menguap, dan panas yang keluar dari RFG memicu dan membakarnya dengan cepat.

Jadi akankah di masa depan nanti mobil atau motor memakai air laut daripada bensin?

Kalau teknologi ini benar-benar bisa terealisasi, dunia sudah tidak perlu khawatir lagi dengan krisis energi.

Bravo ilmu pengetahuan..!!!

sumber: http://auto.howstuffworks.com/

pengantar ilmu kimia

1. Lahirnya Teori Atom

Kimia modern berdasarkan atas teori atom. Untuk memahami teori atom, Anda pertama harus mempelajari hukum-hukum fundamental termasuk hukum kekekalan massa, hukum perbandingan tetap, dan hukum perbandingan berganda. Hukum-hukum ini adalah dasar teori atom dan pada saat yang sama merepresentasikan kesimpulan yang ditarik dari teori atom. Namun, teori atom sendiri tidak lengkap. Kimia dapat menjadi sistem yang konsisten sejak teori atom dikombinasikan dengan konsep molekul. Di masa lalu, keberadaan atom hanyalah hipotesis. Di awal abad ke-20 teori atom akhirnya terbukti. Juga menjadi jelas bahwa atom terdiri atas partikel-partikel yang lebih kecil. Teori atom saat ini secara pelahan berkembang sejalan dengan perkembangan ini dan menjadi kerangka dunia material.

1.1 Lahirnya kimia

Kimia modern dimulai oleh kimiawan Perancis Antoine Laurent Lavoisier (1743-1794). Ia menemukan hukum kekekalan massa dalam reaksi kimia, dan mengungkap peran oksigen dalam pembakaran. Berdasarkan prinsip ini, kimia maju di arah yang benar.

Sebenarnya oksigen ditemukan secara independen oleh dua kimiawan, kimiawan Inggris Joseph Priestley (1733-1804) dan kimiawan Swedia Carl Wilhelm Scheele (1742-1786), di penghujung abad ke-18. Jadi, hanya sekitar dua ratus tahun sebelum kimia modern lahir. Dengan demikian, kimia merupakan ilmu pengetahuan yang relatif muda bila dibandingkan dengan fisika dan matematika, keduanya telah berkembang beberapa ribu tahun.

Namun alkimia, metalurgi dan farmasi di zaman kuno dapat dianggap sebagai akar kimia. Banyak penemuan yang dijumpai oleh orang-orang yang terlibat aktif di bidang-bidang ini berkontribusi besar pada kimia modern walaupun alkimia didasarkan atas teori yang salah. Lebih lanjut, sebelum abad ke-18, metalurgi dan farmasi sebenarnya didasarkan atas pengalaman saja dan bukan teori. Jadi, nampaknya tidak mungkin titik-titik awal ini yang kemudian berkembang menjadi kimia modern. Berdasarkan hal-hal ini dan sifat kimia modern yang terorganisir baik dan sistematik metodologinya, akar sebenarnya kimia modern mungkin dapat ditemui di filosofi Yunani kuno.

Jalan dari filosofi Yunani kuno ke teori atom modern tidak selalu mulus. Di Yunani kuno, ada perselisihan yang tajam antara teori atom dan penolakan keberadaan atom. Sebenarnya, teori atom tetap tidak ortodoks dalam dunia kimia dan sains. Orang-orang terpelajar tidak tertarik pada teori atom sampai abad ke-18. Di awal abad ke-19, kimiawan Inggris John Dalton (1766-1844) melahirkan ulang teori atom Yunani kuno. Bahkan setelah kelahirannya kembali ini, tidak semua ilmuwan menerima teori atom. Tidak sampai awal abad 20 teori ato, akhirnya dibuktikan sebagai fakta, bukan hanya hipotesis. Hal ini dicapai dengan percobaan yang terampil oleh kimiawan Perancis Jean Baptiste Perrin (1870-1942). Jadi, perlu waktu yang cukup panjang untuk menetapkan dasar kimia modern.

Sebagaimana dicatat sebelumnya, kimia adalah ilmu yang relatif muda. Akibatnya, banyak yang masih harus dikerjakan sebelum kimia dapat mengklaim untuk mempelajari materi, dan melalui pemahaman materi ini memahami alam ini. Jadi, sangat penting di saat awal pembelajaran kimia kita meninjau ulang secara singkat bagaimana kimia berkembang sejak kelahirannya.

a. Teori atom kuno

Sebagaimana disebut tadi, akar kimia modern adalah teori atom yang dikembangkan oleh filsuf Yunani kuno. Filosofi atomik Yunani kuno sering dihubungkan dengan Democritos (kira-kira 460BC- kira-kira 370 BC). Namun, tidak ada tulisan Democritos yang tinggal. Oleh karena itu, sumber kita haruslah puisi panjang “De rerum natura” yang ditulis oleh seniman Romawi Lucretius (kira-kira 96 BC- kira-kira 55 BC).

Atom yang dipaparkan oleh Lucretius memiliki kemiripan dengan molekul modern. Anggur (wine) dan minyak zaitun, misalnya memiliki atom-atom sendiri. Atom adalah entitas abstrak. Atom memiliki bentuk yang khas dengan fungsi yang sesuai dengan bentuknya. ”Atom anggur bulat dan mulus sehingga dapat melewati kerongkongan dengan mulus sementara atom kina kasar dan akan sukar melalui kerongkongan”. Teori struktural modern molekul menyatakan bahwa terdapat hubungan yang sangat dekat antara struktur molekul dan fungsinya.

Walaupun filosofi yang terartikulasi oleh Lucretius tidak didukung oleh bukti yang didapat dari percobaan, inilah awal kimia modern.

Dalam periode yang panjang sejak zaman kuno sampai zaman pertengahan, teori atom tetap In heretikal (berlwanan dengan teori yang umum diterima) sebab teori empat unsur (air, tanah, udara dan api) yang diusulkan filsuf Yunani kuno Aristotole (384 BC-322 BC) menguasi. Ketika otortas Aristotle mulai menurun di awal abad modern, banyak filsuf dan ilmuwan mulai mengembangkan teori yang dipengaruhi teori atom Yunani. Gambaran materi tetap dipegang oleh filsuf Perancis Rene Descartes (1596-1650), filsuf Jerman Gottfried Wilhelm Freiherr von Leibniz (1646-1716), dan ilmuwan Inggris Sir Issac Newton (1642-1727) yang lebih kurang dipengaruhi teori atom.

b. Teori atom Dalton

Di awal abad ke-19, teori atom sebagai filosofi materi telah dikembangkan dengan baik oleh Dalton yang mengembangkan teori atomnya berdasarkan peran atom dalam reaksi kimia. Teori atomnya dirangkumkan sebagai berikut:

Teori atom Dalton:

(i) partikel dasar yang menyusun unsur adalah atom. Semua atom unsur tertentu identik. (ii) massa atom yang berjenis sama akan identik tetapi berbeda dengan massa atom unsur jenis lain.

(iii) keseluruhan atom terlibat dalam reaksi kimia. Keseluruhan atom akan membentuk senyawa. Jenis dan jumlah atom dalam senyawa tertentu tetap.

Dasar teoritik teori Dalton terutama didasarkan pada hukum kekekalan massa dan hukum perbandingan tetap1, keduanya telah ditemukan sebelumnya, dan hukum perbandingan berganda2 yang dikembangkan oleh Dalton sendiri.

1 Senyawa tertentu selalu mengandung perbandingan massa unsur yang sama.

2 Bila dua unsur A dan B membentuk sederet senyawa, rasio massa B yang bereaksi dengan sejumlah A dapat direduksi menjadi bilangan bulat sederhana.

Atom Democritos dapat dikatakan sebagai sejenis miniatur materi. Jadi jumlah jenis atom akan sama dengan jumlah materi. Di pihak lain, atom Dalton adalah penyusun materi, dan banyak senyawa dapat dibentuk oleh sejumlah terbatas atom. Jadi, akan terdapat sejumlah terbatas jenis atom. Teori atom Dalton mensyaratkan proses dua atau lebih atom bergabung membentuk materi. Hal ini merupakan alasan mengapa atom Dalton disebut atom kimia.

Bukti keberadaan atom

Ketika Dalton mengusulkan teori atomnya, teorinya menarik cukup banyak perhatian. Namun, teorinya ini gagal mendapat dukungan penuh. Beberapa pendukung Dalton membuat berbagai usaha penting untuk mempersuasi yang melawan teori ini, tetapi beberapa oposisi masih tetap ada. Kimia saat itu belum cukup membuktikan keberadaan atom dengan percobaan. Jadi teori atom tetap merupakan hipotesis. Lebih lanjut, sains setelah abad ke-18 mengembangkan berbagai percobaan yang membuat banyak saintis menjadi skeptis pada hipotesis atom. Misalnya, kimiawan tenar seperti Sir Humphry Davy (1778-1829) dan Michael Faraday (1791-1867), keduanya dari Inggris, keduanya ragu pada teori atom.

Sementara teori atom masih tetap hipotesis, berbagai kemajuan besar dibuta di berbagai bidang sains. Salah satunya adalah kemunculan termodinamika yang cepat di abad 19. Kimia struktural saat itu yang direpresentasikan oleh teori atom hanyalah masalah akademik dengan sedikit kemungkinan aplikasi praktis. Tetapi termodinamika yang diturunkan dari isu praktis seperti efisiensi mesin uap nampak lebih penting. Ada kontroversi yang sangat tajam antara atomis dengan yang mendukung termodinamika. Debat antara fisikawan Austria Ludwig Boltzmann (1844-1906) dan kimiawan Jerman Friedrich Wilhelm Ostwald (1853-1932) dengan fisikawan Austria Ernst Mach (1838-1916) pantas dicatat. Debat ini berakibat buruk, Boltzmann bunuh diri.

Di awal abad 20, terdapat perubahan besar dalam minat sains. Sederet penemuan penting, termasuk keradioaktifan, menimbulkan minat pada sifat atom, dan lebih umum, sains struktural. Bahwa atom ada secara percobaan dikonfirmasi dengan percobaan kesetimbangan sedimentasi oleh Perrin.

Botanis Inggris, Robert Brown (1773-1858) menemukan gerak takberaturan partikel koloid dan gerakan ini disebut dengan gerak Brow, untuk menghormatinya. Fisikawan Swiss Albert Einstein (1879-1955) mengembangkan teori gerak yang berdasarkan teori atom. Menurut teori ini, gerak Brown dapat diungkapkan dengan persamaan yang memuat bilangan Avogadro.

D =(RT/N).(1/6παη) ... (1.1)

D adalah gerakan partikel, R tetapan gas, T temperatur, N bilangan Avogadro, α jari-jari partikel dan η viskositas larutan.

Inti ide Perrin adalah sebagai berikut. Partikel koloid bergerak secara random dengan gerak Brown dan secara simultan mengendap ke bawah oleh pengaruh gravitasi. Kesetimbangan sedimentasi dihasilkan oleh kesetimbangan dua gerak ini, gerak random dan sedimentasi. Perrin dengan teliti mengamati distribusi partikel koloid, dan dengan bantuan persamaan 1.1 dan datanya, ia mendapatkan bilangan Avogadro. Mengejutkan nilai yang didapatkannya cocok dengan bilangan Avogadro yang diperoleh dengan metoda lain yang berbeda. Kecocokan ini selanjutnya membuktikan kebenaran teori atom yang menjadi dasar teori gerak Brown.

Tidak perlu disebutkan, Perrin tidak dapat mengamati atom secara langsung. Apa yang dapat dilakukan saintis waktu itu, termasuk Perrin, adalah menunjukkan bahwa bilangan Avogadro yang didapatkan dari sejumlah metoda yang berbeda berdasarkan teori atom identik. Dengan kata lain mereka membuktikan teori atom secara tidak langsung dengan konsistensi logis.

Dalam kerangka kimia modern, metodologi seperti ini masih penting. Bahkan sampai hari ini masih tidak mungkin mengamati langsung partikel sekecil atom dengan mata telanjang atau mikroskop optic. Untuk mengamati langsung dengan sinar tampak, ukuran partikelnya harus lebih besar daripada panjang gelombang sinar tampak. Panjang gelombang sinar tampak ada dalam rentang 4,0 x 10-7- 7,0 x10-7 m, yang besarnya 1000 kali lebih besar daripada ukuran atom. Jadi jelas di luar rentang alat optis untuk mengamati atom. Dengan bantuan alat baru seperti mikroskop electron (EM) atau scanning tunneling microscope (STM), ketidakmungkinan ini dapat diatasi. Walaupun prinsip mengamati atom dengan alat ini, berbeda dengan apa yang terlibat dengan mengamati bulan atau bunga, kita dapat mengatakan bahwa kita kini dapat mengamati atom secara langsung.

Anda dapat melihat foto-foto STM yang lebih baru di alamat URL http://www.almaden.ibm.com/vis/stm/gallery.html

1.2 Komponen-komponen materi

a. Atom

Dunia Kimia berdasarkan teori atom, satuan terkecil materi adalah atom. Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsure yang tidak akan mengalami perubahan dalam reaksi Kimia. Semua atom terdiri atas komponen yang sama, sebuah inti dan electron. Diameter inti sekitar 10-15-10-14 m, yakni sekitar 1/10 000 besarnya atom. Lebih dari 99 % massa atom terkonsentrasi di inti. Inti terdiri atas proton dan neutron, dan jumlahnya menentukan sifat unsur.

Massa proton sekitar 1,67 x 10-27 kg dan memiliki muatan positif, 1,60 x 10-19 C (Coulomb). Muatan ini adalah satuan muatan listrik terkecil dan disebut muatan listrik elementer. Inti memiliki muatan listrik positif yang jumlahnya bergantung pada jumlah proton yang dikandungnya. Massa neutron hampir sama dengan massa proton, tetapi neutron tidak memiliki muatan listrik. Elektron adalah partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom secara listrik bermuatan netral. Sifat partikel-partikel yang menyusun atom dirangkumkan di Tabel 1.1.

Tabel 1.1 Sifat partikel penyusun atom.

massa (kg) Massa relatif Muatan listrik (C)
proton 1,672623x10-27 1836 1,602189x10-19
neutron 1,674929x10-27 1839 0
elektron 9,109390x10-31 1 -1,602189x10-19

Jumlah proton dalam inti disebut nomor atom dan jumah proton dan neutron disebut nomor massa. Karena massa proton dan neutron hampir sama dan massa elektron dapat diabaikan dibandingkan massa neutron dan proton, massa suatu atom hampir sama dengan nomor massanya.

Bila nomor atom dan nomor massa suatu atom tertentu dinyatakan, nomor atom ditambahkan di kiri bawah symbol atom sebagai subscript, dan nomor massa di kiri atas sebagai superscript. Misalnya untuk atom karbon dinyatakan sebagai 126 C karena nomor atom adalah 6 dan nomor massanya adalah 12. Kadang hanya nomor massanya yang dituliskan, jadi sebagai 12C.

Jumlah proton dan elektron yang dimiliki oleh unsur menentukan sifat Kimia unsur. Jumlah neutron mungkin bervariasi. Suatu unsur tertentu akan selalu memiliki nomor atom yang sama tetapi mungkin memiliki jumlah neutron yang berbeda-beda. Varian-varian ini disebut isotop. Sebagai contoh hydrogen memiliki isotop yang dituliskan di tabel berikut.

Tabel 1.2 Isotop-isotop hidrogen

Simbol dan nama Jumlah proton Jumlah neutron
1H hidrogen 1 0
2H deuterium, D 1 1
3H tritium, T 1 2

Banyak unsur yang ada alami di alam memiliki isotop-isotop. Beberapa memiliki lebih dari dua isotop. Sifat kimia isotop sangat mirip, hanya nomor massanya yang berbeda.

b. Molekul

Komponen independen netral terkecil materi disebut molekul. Molekul monoatomik terdiri datu atom (misalnya, Ne). Molekul poliatomik terdiri lebih banyak atom (misalnya, CO2). Jenis ikatan antar atom dalam molekul poliatomik disebut ikatan kovalen (lihat bab 3.2(b)).

Salah satu alasan mengapa mengapa diperlukan waktu yang lama sampai teori atom diterima dengan penuh adalah sebagai berikut. Dalam teorinya Dalton menerima keberadaan molekul (dalam terminologi modern) yang dibentuk oleh kombinasi atom yang berbeda-beda, tetapi ia tidak tidak menerima ide molekul diatomik untuk unsur seperti oksigen, hidrogen atau nitrogen yang telah diteliti dengan intensif waktu itu. Dalton percaya pada apa yang disebut “prinsip tersederhana” dan berdasarkan prinsip ini, ia secara otomatis mengasumsikan bahwa unsur seperti hidrogen dan oksigen adalah monoatomik.

Kimiawan Perancis Joseph Louis Gay-Lussac (1778-1850) mengusulkan hukum reaksi gas yang menyatakan bahwa dalam reaksi gas, perbandingan volume adalah bilangan bulat. Teori atom Dalton tidak memberikan rasional hukum ini. Di tahun 1811, kimiawan Italia Amedeo Avogadro (1776-1856) mengusulkan unsur gas seperti hidrogen dan oksigen yang bukan monoatomik tetapi diatomik. Lebih lanjut, ia juga mengusulkan bahwa pada temperatur dan tekanan tetap, semua gas dalam volume tertentu mengandung jumlah partikel yang sama. Hipotesis ini awalnya disebut hipotesis Avogadro, tetapi kemudian disebut hukum Avogadro.

Hukum Avogadro memberikan dasar penentuan massa atom relatif, yakni massa atom (secara nal disebut berat atom). Pentingnya massa atom ini lambat disadari. Kimiawan Italia Stanislao Cannizzaro (1826-1910) menyadari pentingnya hipotesis Avogadro dan validitasnya di International Chemical Congress yang diselenggarakan di Karlsruhe, Germany, di tahun 1860, yang diadakan utuk mendiskusikan kesepakatan internasional untuk standar massa atom. Sejak itu, validitas hipotesis Avogadro secara perlahan diterima.

c. Ion

Atom atau kelompok atom yang memiliki muatan listrik disebut ion. Kation adalah ion yang memiliki muatan positif, anion memiliki muatan negatif. Tarikan listrik akan timbul antara kation dan anion. Dalam kristal natrium khlorida (NaCl), ion natrium (Na+) dan ion khlorida (Cl-) diikat dengan tarikan listrik. Jenis ikatan ini disebut ikatan ion (lihat bab3.2 (a)).

1.3 Stoikiometri

a. Tahap awal stoikiometri

Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.

Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.

Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.

Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.

Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.

b. Massa atom relatif dan massa atom

Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.

Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi.

Soal Latihan 1.1 Perubahan massa atom disebabkan perubahan standar. Hitung massa atom hidrogen dan karbon menurut standar Berzelius (O = 100). Jawablah dengan menggunakan satu tempat desimal.

Jawab.

Massa atom hidrogen = 1 x (100/16) = 6,25 (6,3), massa atom karbon = 12 x (100/16)=75,0

Massa atom hampir semua unsur sangat dekat dengan bilangan bulat, yakni kelipatan bulat massa atom hidrogen. Hal ini merupakan kosekuensi alami fakta bahwa massa atom hidrogen sama dengan massa proton, yang selanjutnya hampir sama dengan massa neutron, dan massa elektron sangat kecil hingga dapat diabaikan. Namun, sebagian besar unsur yang ada secara alami adalah campuran beberapa isotop, dan massa atom bergantung pada distribusi isotop. Misalnya, massa atom hidrogen dan oksigen adalah 1,00704 dan 15,9994. Massa atom oksigen sangat dekat dengan nilai 16 agak sedikit lebih kecil.

Contoh Soal 1.2 Perhitungan massa atom. Hitung massa atom magnesium dengan menggunakan distribsui isotop berikut: 24Mg: 78,70%; 25Mg: 10,13%, 26Mg: 11,17%.

Jawab:

0,7870 x 24 + 0,1013 x 25 +0,1117 x 26 = 18,89+2,533+2,904 = 24,327(amu; lihat bab 1.3(e))

Massa atom Mg = 18,89 + 2,533 + 2,904 =24.327 (amu).

Perbedaan kecil dari massa atom yang ditemukan di tabel periodik (24.305) hasil dari perbedaan cara dalam membulatkan angkanya.

Massa molekul dan massa rumus

Setiap senyawa didefinisikan oelh rumus kimia yang mengindikasikan jenis dan jumlah atom yang menyususn senyawa tersebut. Massa rumus (atau massa rumus kimia) didefinisikan sebagai jumlah massa atom berdasarkan jenis dan jumlah atom yang terdefinisi dalam rumus kimianya. Rumus kimia molekul disebut rumus molekul, dan massa rumus kimianya disebut dengan massa molekul.5 Misalkan, rumus molekul karbon dioksida adalah CO2, dan massa molekularnya adalah 12 +(2x 6) = 44. Seperti pada massa atom, baik massa rumus dan massa molekul tidak harus bilangan bulat. Misalnya, massa molekul hidrogen khlorida HCl adalah 36,5. Bahkan bila jenis dan jumlah atom yang menyusun molekul identik, dua molekul mungkin memiliki massa molekular yang berbeda bila ada isostop berbeda yang terlibat.

Tidak mungkin mendefinisikan molekul untuk senyawa seperti natrium khlorida. Massa rumus untuk NaCl digunakan sebagai ganti massa molekular.

Contoh Soal 1.3 Massa molekular mokelul yang mengandung isotop.

Hitung massa molekular air H2O dan air berat D2O (2H2O) dalam bilangan bulat.

Jawab

Massa molekular H2O = 1 x 2 + 16 = 18, massa molekular D2O = (2 x 2) + 16 = 20

Perbedaan massa molekular H2O dan D2O sangat substansial, dan perbedaan ini sifat fisika dan kimia anatara kedua jenis senyawa ini tidak dapat diabaikan. H2O lebih mudah dielektrolisis daripada D2O. Jadi, sisa air setelah elektrolisis cenderung mengandung lebih banyak D2O daripada dalam air alami.

d. Kuantitas materi dan mol

Metoda kuantitatif yang paling cocok untuk mengungkapkan jumlah materi adalah jumlah partikel seperti atom, molekul yang menyusun materi yang sedang dibahas. Namun, untuk menghitung partikel atom atau molekul yang sangat kecil dan tidak dapat dilihat sangat sukar. Alih-alih menghitung jumlah partikel secara langsung jumlah partikel, kita dapat menggunakan massa sejumlah tertentu partikel. Kemudian, bagaimana sejumlah tertentu bilangan dipilih? Untuk

menyingkat cerita, jumlah partikel dalam 22,4 L gas pada STP (0℃, 1atm) dipilih sebagai jumlah standar. Bilangan ini disebut dengan bilangan Avogadro. Nama bilangan Loschmidt juga diusulkan untuk menghormati kimiawan Austria Joseph Loschmidt (1821-1895) yang pertama kali dengan percobaan (1865).

Sejak 1962, menurut SI (Systeme Internationale) diputuskan bahwam dalam dunia kimia, mol digunakan sebagai satuan jumlah materi. Bilangan Avogadro didefinisikan jumlah atom karbon dalam 12 g 126C dan dinamakan ulang konstanta Avogadro.

Ada beberapa definisi “mol”:

(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C. (ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.

(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.

e. Satuan massa atom (sma)

Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.